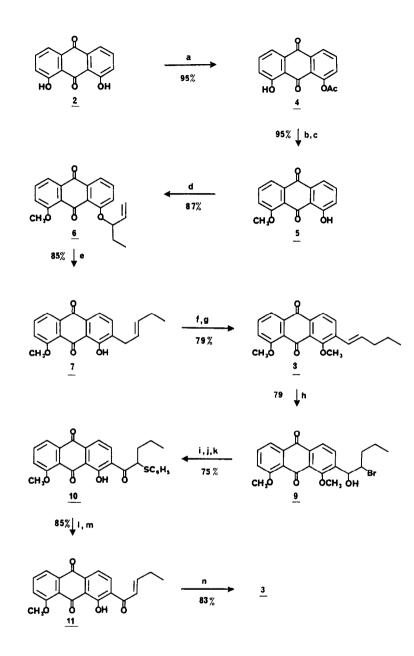

A VICARIOUS AROMATIC SUBSTITUTION APPROACH TO AKLAVINONE FROM CHRYSAZIN

Raymond A. Murphy, Jr. and Michael P. Cava*


Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104

Abstract: The cheap, available dye-intermediate 1,8-dihydroxyanthraquinone (2) is converted efficiently to a useful aklavinone precursor (3). A Mitsunobu alkylation-Claisen rearrangement sequence and an unprecedented vicarious aromatic substitution on an anthraquinone are employed as key steps.

The anthracycline antibiotics have attracted a vast amount of synthetic interest in recent years because of their great therapeutic value.¹ Aklavinone (1), the aglycone portion of one of the most promising new anthracyclines, aclacinomycin,² has been synthesized by several different routes.^{3a-d} All of these syntheses have relied on the construction of either the <u>B</u> or <u>C</u> ring as a key step. Our aim was to graft a suitably functionalized <u>A</u> ring onto an intact anthraquinone nucleus. Earlier we reported the synthesis of a tetracyclic model system lacking the hydroxyl in the <u>D</u> ring <u>via</u> a low yielding, multi-step sequence involving an experimentally complicated annulation reaction.⁴ We now wish to report a considerably improved route starting from 1,8-dihydroxyanthraquinone (chrysazin) (2) and proceeding to the tetracyclic aklavinone precursor (3) in 22% overall yield. The final step in this sequence is a novel vicarious aromatic substitution reaction on an anthraquinone. Vicarious aromatic substitutions have been studied in simple aromatic systems,⁵ but appear to have seen no use in natural product synthesis.

One of the hydroxy groups of 1,8-dihydroxyanthraquinone (2) was selectively acetylated using a procedure employed by Mitscher⁶ in the aloe-emodin series. Methylation followed by removal of the acetate with sodium hydroxide gave 1-hydroxy-8-methoxyanthraquinone (5) in 90% overall yield.⁷

a) $B(OH)_3$, Ac_2O , $90^{\circ}C$ b) K_2CO_3 , Me_2SO_4 , acetone c) NaOH, H_2O , $60^{\circ}C$ d) 1-penten-3-ol, diethylazodicarboxylate, $PØ_3$, THF 0° - rt e) $Na_2S_2O_4$, DMF- H_2O , $70^{\circ}C$ f) K_2CO_3 , Me_2SO_4 , acetone g) RhCl₃, EtOH h) NBS, H_2O , acetone i) Jones oxidation j) $AlCl_3$, CH_2Cl_2 , rt k) ØSH, NaOH, \emptyset H- H_2O , cetyltrimethylammonium bromide 1) $NaIO_4$, $HOAc-H_2O$ m) CCl₄, $70^{\circ}C$ n) PhSCH₂CN, NaCH₂SOCH₃, DMSO.

The formation of a pure substituted allylic ether such as (6) proved to be a problem in earlier anthraquinone syntheses.⁸ Alkylations using bromides more complicated than allyl bromide gave low yields due to substitution a both α and γ positions. The Mitsunobu-type alkylation reaction⁹ totally eliminated this problem as ether (6) was obtained pure in 87% yield using l-penten-3-ol. Reductive Claisen rearrangement of ether (6) was carried out with sodium dithionite (1.3 eq, 70°C) to yield (7) in 85% yield.¹⁰ The elaboration of the alkenyl sidechain in (7) to the hydroxyenone (<u>11</u>) was carried out as follows. Isomerization of the double bond from the <u>2</u> to the <u>1</u> position with RhCl₃ in refluxing absolute ethanol (100/1 catalytic ratio) followed by methylation of the phenol gave (8) in 79% for the two steps.⁸ Regioselective formation of bromohydrin (9) was accomplished in 83% yield. Jones oxidation, selective demethylation with AlCl₃ in CH₂Cl₂, and phase-transfer catalysed displacement¹⁴ of the α bromide gave α -phenylthioketone (10) in 79% for the three steps. Oxidation to the sulfoxide and pyrolysis gave enone¹¹ (11) in 85% for the two steps.

The key step in our approach was a tandem Michael-vicarious aromatic substitution ring closure. This was carried out most auspiciously using PhSCH₂CN as Michael donor and dimsylsodium-DMSO as base-solvent system. The hydroxyenone (11) was added dropwise as a DMSO solution to the preformed anion (3.5 eg NaCH₂SOCH₃-DMSO) and the solution allowed to stir at room temperature for approx. 2 hrs. The reaction mixture was neutralized with HOAc, diluted with CH₂Cl₂, washed with H₂O, and column chromatographed on silica gel (ss 2-1: hexane-ethyl acetate) to yield yellow crystalline (3)¹² (mp 138-140) in 83%. This tetracyclic ketone-nitrile obtained in 22% overall yield from chrysazin contains much useful functionalization in the <u>A</u> ring. Studies on the conversion of this intermediate to aklavinone are presently underway in our laboratories. <u>Acknowledgment</u>: This work was Supported by a grant from the National Institutes of Health, grant number CA 30377. We would like to thank the Rohm and Haas Co. for partial support of Raymond A. Murphy, Jr.

References

- 1. F. Arcamone, Doxorubicin, Academic Press, 1981.
- 2. T. Oki, et. al., The Journal of Antibiotics, (1975), 28, 830.
- a) A. S. Kende and J. P. Rizzi, <u>J. Am. Chem. Soc.</u>, (1981), <u>103</u>, 4247. b) B. A. Pearlman, J. M. McNamara, I. Hasan, S. Hatakeyama, H. Sekizaki, and Y. Kishi, <u>J. Am. Chem. Soc.</u>, (1981), <u>103</u>, 4248. c) P. N. Confalone and G. Pizzolato, <u>J. Am. Chem. Soc.</u>, (1981), <u>103</u>, 4251. d) R. K. Boeckman, Jr. and F. W. Sum, <u>J. Am. Chem. Soc.</u>, (1982), <u>104</u>, 4604.
- 4. Z. Ahmed and M. P. Cava, <u>Tetrahedron Lett.</u>, 5239 (1981).

- a) J. Golinski and M. Makosza, <u>Tetrahedron Lett.</u>, 3495 (1978).
 b) J. Winiarski and M. Makosza, <u>J. Org. Chem.</u>, (1980), <u>45</u>, 1534.
- 6. L. A. Mitscher, et. al., J. Org. Chem., (1980), 45, 20.
- 7. 1-hydroxy-8-acetoxyanthraquinone (4) gave poor yield in the Mitsunobu alkylation.
- 8. A. Castonguay and P. Brassard, Can. J. Chem., (1977), 55, 1534.
- 9. 0. Mitsunobu, Synthesis, (1981), 1.
- 10. P. Rutledge, et. al., Tetrahedron Lett., 4407 (1982).
- 11. <u>hydroxyenone (11)</u>: mp 119-121°C; mass spectrum [m/e 336, 321, 307, 282 and 281]; nmr [§ 13.67 (s, 1H); 7.97 (d, 1H); 7.87 (d, 1H); 7.78 (m, 1H); 7.39 (d, 1H); 7.06 (m, 1H); 6.92 (d, 1H); 4.04 (s, 3H); 2.32 (m, 2H); 1.15 (t, 3H).
- 12. <u>tetracyclic keto-nitrile (3)</u>: mp 138-140°C; high resolution mass spectrum, calcd. for C_{22H1705}N m/e 375.1107, observed m/e 375.1114; mass spectrum [m/e 375, 358, 346, 319, 301 and 289]; nmr [& 14.20 (s, 1H); 7.90 (s, 1H); 7.84 (m, 2H); 7.39 (d, 1H); 4.15 (d, 1H); 4.07 (s, 3H) 2.88; (m, 2H); 2.49 (m, 1H); 1.73 (m, 2H); 1.05 (t, 3H).

(Received in USA 12 September 1983)